## Tangent Line Equation Calculator

This tool allows (free) you to calculate the equation of the tangent line to a given function at a specific point.

**Usage Instructions:**

- Enter the function in the format, e.g., f(x) = x^2, in the input field.
- Enter the x-coordinate of the point where you want to find the tangent line.
- Click the "Calculate" button to get the tangent line equation.

**Example:**

If you want to find the tangent line to the function f(x) = x^2 at x = 2, enter "f(x) = x^2" and "2" as the point.

**Result:**

The equation of the tangent line is displayed below the "Calculate" button.

**Note**: You may need an internet connection to load the Math.js library used for calculations.

### What is Tangent Line Equation?

The tangent line equation is a linear equation that represents the slope of a function at a specific point. The general form of the equation of a tangent line is:

**y = mx + b**

Where:

**y**is the dependent variable (usually the function's output).**x**is the independent variable (usually the function's input or the point where you want to find the tangent).**m**is the slope of the tangent line at the given point. To find**m**, you typically calculate the derivative of the function with respect to**x**and then evaluate it at the specific point.**b**is the y-intercept of the tangent line, which can be found using the point-slope formula,**b = y - mx**.

So, to find the equation of the tangent line to a function at a specific point, you need to calculate the slope **m** using the derivative and find the y-intercept **b** using the point and slope.